7
Public Utilities

This chapter of the General Plan establishes policies and provisions for public utilities, including water supply, wastewater treatment, and solid waste handling. The provision of adequate public facilities is a critical component to successful implementation of the General Plan.

7.1 WATER SUPPLY AND CONSERVATION

WATER PROVIDERS

The Yuba City Utilities Department provides water within the City limits, and with the purchase of the Hillcrest Water Company (HWC) in 2001, now also provides water service beyond the City limits. In 2002, Yuba City had approximately 9,020 surface water connections; the City obtains its surface water supply from the Feather River, under four water supply contracts:

- State Water Resource Control Board (SWRCB) Permit 14045;
- State Water Resource Control Board Permit 18558;
- Yuba County Water District (YCWD); and
- Department of Water Resources, State Water Project.

The City surface water supply also has access to a limited water supply from a back-up water well.

Most residents in the Sphere of Influence outside the City limits obtain their water from either private wells or the HWC, which had approximately 4,500 water service connections in 2002. Yuba City purchased HWC in May 2001 and had assumed responsibility for water service, renaming the area Yuba City Groundwater Service. This water service system consists of three water treatment plants and 15 wells.¹ There are several other small private water districts such as Wildwood East, Wildwood West, and El Margarita Water District. These districts serve over 250 homes. The water service area is shown in Figure 7-1.

Groundwater supplied to customers is generally hard water, has higher levels of some minerals—such as iron, manganese, arsenic—and some areas also contain nitrates. Not all of the wells will meet the arsenic standards approved by the Federal EPA. Yuba City is evaluating options related to converting these customers from groundwater supply to surface water supply, or treating the groundwater to meet all primary and secondary standards.²

¹ Bill Lewis, Yuba City Utilities Director, written comments, December 10, 2001.
² Ibid.
Figure 7-1
Water & Wastewater Facilities

Source: City of Yuba City, 2001.

- Water Tanks
- Waste Water or Water Treatment Facility
- Yuba City Utility District Water Service Area
- City Limits
- Potential Interchange
- Planning Area
- Surface Water Source
- Ground Water Source
SUPPLY AND PROJECTED DEMAND

Under SWRCB Permits 14045 and 18558 the City can obtain up to 15,500 acre-feet of water per year (see Table 7-1)—provided there are no curtailments—at no cost; however, SWRCB Permit 14045 does not license diversion during July and August and Permit 18558 does not provide water from July through September. Permit 14045 provides the basis of the City supply outside summer months and Permit 18558, though awarded in 1978, was used for the first time in 2000.

Yuba City negotiated a contract for water supply with Yuba County Water District (YCWD) to provide a base summer water supply, and water supply under this contract has never been curtailed. This contract will expire in 2010; by then, the City expects to have renegotiated this contract or replaced this supply by other means. The State Water Project contract is presently used to supplement YCWD during the months of July and August, though water from this contract can be used in any month.

The Yuba City surface water system maintains one well that has a capacity of approximately 3 million gallons per day. In the event of a significant water shortage, this well could be blended with the available treated surface water to meet demand.

Table 7-1: Water Supply History and Projections (Acre Feet Per Year)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWRCB Permit 14045</td>
<td>6,500</td>
<td>6,500</td>
<td>6,500</td>
<td>6,500</td>
<td>6,500</td>
</tr>
<tr>
<td>SWRCB Permit 18558</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
</tr>
<tr>
<td>Yuba County Water District</td>
<td>4,500</td>
<td>4,500</td>
<td>4,500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>State Water Project</td>
<td>9,600</td>
<td>9,600</td>
<td>9,600</td>
<td>9,600</td>
<td>9,600</td>
</tr>
<tr>
<td>Future Water Rights</td>
<td>-</td>
<td>-</td>
<td>10,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Total</td>
<td>29,600</td>
<td>29,600</td>
<td>39,600</td>
<td>40,100</td>
<td>40,100</td>
</tr>
</tbody>
</table>

1 All current contracts are for set amounts of water. Note that the YCWD contract expires after 2010, at which point the City expects to have replaced it with water from another source. All contracts may be subject to curtailments, reviewed, or replaced.

2 The Urban Water Management Report incorrectly listed the amount as 9373; the maximum annual usage was reduced to 6500 acre-feet in 1982.

Despite the fact that 40,100 acre feet of raw water supply is projected for 2020, the City’s Urban Water Management Plan (UWMP) uses a more conservative estimate of 32,573 acre feet in the analysis of supply versus demand. This number does not assume as yet undetermined future water rights, nor does it assume that Yuba County Water District supply is curtailed.

City Water Supply System

The existing surface water supply system includes 9.25 million gallons (MG) of distribution system storage from the 20 million gallons per day (mgd) Yuba City Water Treatment Plant (WTP), Sam Brannan, Rowe Avenue, Burns Drive (Garden Highway), Forbes Avenue, and Plumas Street tanks, though the City normally does not store water in the Forbes or Plumas tanks. Taking emergency
storage requirements into account, there is a current storage deficit of 3.4 MG. Future growth will require an additional 2.9 MG beyond the current deficit, totaling an additional 6.3 MG by 2020.¹

The above water supply system does not include surface water to groundwater customers. Yuba City surface water and groundwater pipelines are very near each other along the west City boundary. Some groundwater customers are literally next door to surface water customers. During the past droughts, groundwater wells were able to meet the needs of their customers. If surface water supplies were inadequate to meet the needs of Yuba City, a minimal amount of pipe could be added to interconnect the two systems. Areas served by surface water and groundwater are illustrated in Figure 7-1.

Historic and Projected Water Demand

As Table 7-2 shows, surface water use has grown 28 percent from 1990 to 2000, and total water use in the service area is projected to more than double in the next 20 years. This is based on a combination of natural population increase and expansion of the service area within the City’s planning area.

Yuba City is in the process of converting from a flat rate system to a metered system. It is anticipated that 100 percent of the accounts will have meters installed by the end of 2003.

Demand peaks in the summer, when temperatures regularly exceed 100 degrees Fahrenheit and residential and commercial irrigation demand is at its height. Average demand for 1993-1995 was 273 gallons per capita per day (gpcd); in 1995, average total demand for the City was 9.15 million gallons a day (mgd) with a maximum-day demand of 17.90 mgd and peak-hour demand of 31.6 mgd.² These figures are expected to rise with overall demand.

Assuming General Plan buildout in 2025, a total of 27,474 acre feet will be required in year 2025. With an expected annual supply of 32,573 acre feet, average demand will not exceed supply. However, there are other factors, such as peak summer demand and unexpected supply curtailments that contribute to supply shortfalls. According to the City’s UWMP, in all cases Yuba City is able to meet the full needs of its customers without mandatory water conservation through the year 2014.³ If the SWP allocation were lower than 50 percent, mandatory water conservation measures would be required prior to 2014. 2001 SWP allocation was 36 percent of total. Based on increased environmental water demands, mandatory water rationing may be required earlier than 2014 unless additional water rights are obtained. Yuba City anticipates acquiring additional water rights to supplement or replace the YCWD contract that expires in 2010.

¹ Yuba City Water System Master Plan (WSMP), 1997, p 4-3.
² WSMP, 1997, p 2-5.
³ UWMP, 2000, p 17, based on a 50 percent SWP allocation.
Table 7-2: Past, Current, and Projected Water Use (Acre Feet Per Year)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Residential (metered)</td>
<td>N/A</td>
<td>2,546</td>
<td>3,855</td>
<td>8,140</td>
<td>9,436</td>
<td>5,581</td>
<td>245%</td>
</tr>
<tr>
<td>Multi Family (metered)</td>
<td>N/A</td>
<td>1,396</td>
<td>1,633</td>
<td>3,625</td>
<td>4,202</td>
<td>2,569</td>
<td>257%</td>
</tr>
<tr>
<td>Commercial</td>
<td>N/A</td>
<td>N/A</td>
<td>2,161</td>
<td>4,715</td>
<td>5,466</td>
<td>3,305</td>
<td>253%</td>
</tr>
<tr>
<td>Industrial</td>
<td>N/A</td>
<td>1,503</td>
<td>1,834</td>
<td>3,210</td>
<td>3,712</td>
<td>1,887</td>
<td>203%</td>
</tr>
<tr>
<td>Landscape</td>
<td>N/A</td>
<td>N/A</td>
<td>568</td>
<td>1,230</td>
<td>1,426</td>
<td>858</td>
<td>251%</td>
</tr>
<tr>
<td>Other</td>
<td>N/A</td>
<td>N/A</td>
<td>1,569</td>
<td>2,780</td>
<td>3,223</td>
<td>1,654</td>
<td>205%</td>
</tr>
<tr>
<td>Total</td>
<td>9,095</td>
<td>10,239</td>
<td>11,620</td>
<td>23,700</td>
<td>27,474</td>
<td>15,854</td>
<td>230%</td>
</tr>
</tbody>
</table>

* Due to the lack of significant customer metering for individual sectors, historical usage records do not exist for 1990.

Sources: 1995: Public Water System Statistics Report to DWR prepared by Yuba City Finance Department, 2000: Customer usage report by account type and total raw water from water plant reports, backwash information from 2000 DHS reports, 2005-2020: Yuba City Urban Water Management Plan 2000, which assumes a 3% annual increase in overall water use; 2025: Dyett and Bhatia, using a 3% annual increase in water use. The urban Water Management Plan did not include estimated for future conversion of existing groundwater customers to surface water.

PLANNED IMPROVEMENTS

The City is in the midst of a 10-year Capital Improvement Program (in two phases, estimated cost of each phase being $5.6 and $2.3 million) to accommodate projected future needs. Improvements to the Water Treatment Plant already completed include upgraded filters, new fluoride system, repair to intake structure, and reliable capacity increased to 20 mgd. Uncompleted improvements include new storage reservoirs with booster pumping stations and new 12- and 16-inch distribution grids.

There are no significant improvements planned in the short term until resolution is reached regarding how to serve current groundwater customers who need to be integrated into the City’s water system. If these customers are converted to surface water, significant improvements will be required at the water treatment plant, and on the distribution system.

CONSERVATION

The City Ordinance allows the City Council to declare an emergency condition and institute mandatory water conservation programs. Such measures include:

- Irrigation limitations to two times per week;
- No use of water on impermeable surfaces;
- All evaporative coolers must be recirculating type;
- Shutoff nozzles on all hoses;

6 Ibid, pp 4-11 and 4-12; Response to General Plan Update Questionnaire.
• Large water users must submit a conservation plan;
• Car wash limitations;
• Water requirements for trees, shrubs and other plant materials except lawns;
• Prohibition of fountains, ponds, etc.; and
• Restaurant restrictions.

Yuba City normally operates its water distribution system at a pressure of 50 to 60 pounds per square inch (psi). In the event of significant water shortages, the system pressure could be reduced. System pressure is maintained using variable speed pumps. There are no elevated water storage tanks still in use. The pressure reduction would reduce demand and reduce the amount of distribution system leakage. Water savings from the existing State conservation ordinances, including that attributed to the replacement of conventional water-using devices with water-saving devices, are estimated to account for approximately 10 percent over the next 25 years.

GUIDING POLICIES

7.1-G-1 Ensure that an adequate supply of water is available to serve existing and future needs of the City.

7.1-G-2 Ensure that necessary water supply infrastructure and storage facilities are in place prior to construction of new development.

7.1-G-3 Maintain existing levels of water service by preserving and improving infrastructure, replacing water mains as necessary, and improving water transmission facilities.

7.1-G-4 Encourage water conservation with incentives for decreased water use and active public education programs.

IMPLEMENTING POLICIES

7.1-I-1 Evaluate the adequacy of water infrastructure in areas where intensification of land use is anticipated to occur, and develop a strategy to implement projects in the Water Supply Master Plan to offset deficiencies in capacity.

7.1-I-2 Coordinate capital improvements planning for all municipal water service infrastructure with the direction, extent, and timing of growth.

7.1-I-3 Decline requests for extension of water beyond the SOI, except in cases of existing documented health hazards and in areas where the City has agreements to provide services.

7.1-I-4 Establish equitable methods for distributing costs associated with providing water service to development, including impact mitigation fees where warranted.

7.1-I-5 Explore ways to encourage use of reclaimed water for irrigation and landscaping purposes.

Utilizing reclaimed water is currently not cost-effective. Should the costs of reclaimed water become more attractive, the City should define a program for encouraging reclaimed water use.
7.1-I-6 Establish guidelines and standards for water conservation and actively promote use of water-conserving devices and practices in both new construction and major alterations and additions to existing buildings.

7.2 WASTEWATER COLLECTION AND TREATMENT

SEWER SERVICE, 2002

Sanitary sewer service in Yuba City is provided by the City Utilities Department. In the unincorporated areas of the SOI, with limited exceptions, municipal sewage treatment has not been available to county residents. As Yuba City incorporates these areas, sewage service will be available if these residents want to connect. Due to the high connection costs (about $10,000), most residents in annexed areas do not connect until their septic systems fail. \(^8\)

The 1997 Yuba City Wastewater System Master Plan (WWSMP) describes the City’s existing sewage collection system and addresses sewage collection system capacity and operational needs. It also recommends a long-term capital improvement program to provide the facilities necessary to accommodate General Plan buildout. The locations of the City’s wastewater facilities are shown in Figure 7-1.

WASTEWATER DISPOSAL SYSTEM, 2002

The City constructed its first municipal sewage treatment plant and collection system near the State Route 20 Bridge. In the early 1970s, the original sewage treatment plant was abandoned and the current Wastewater Treatment Facility (WTF), located farther south, was constructed. The treatment plant uses a pure oxygen activated sludge secondary treatment process, with disinfection and dechlorination. \(^9\) The system includes 13 lift stations throughout the City, built between 1949 and 2001. Pipe sizes range in diameter from six to 36 inches. \(^10\)

At the City’s WTF, wastewater is sent through a grit remover, primary and secondary clarifiers, aeration basin, disinfection facility, and chlorine contact basin, and is exposed to anaerobic digesters. \(^11\) Treated wastewater is discharged to rapid infiltration and evaporation ponds in the feather River floodplain from May 15 to October 31 and to the Feather River downstream of its confluence with the Yuba River during other times of the year. \(^12\) Discharges to the Feather River may change, depending on the requirements of a new discharge permit, which took effect on August 1, 2003. The Regional Board adopted Cease and Desist Order No. R5-2003-0086 concurrently with the new NPDES permit. The order was adopted because the City cannot currently meet all of the new effluent limitations. This Order contains a schedule for the City to bring the treatment facility into compliance with discharge requirements.

\(^8\) UWWMP, 2001, p 22.
\(^9\) Ibid.
\(^10\) Yuba City Wastewater System Master Plan (WWSMP), 1997, p 3-2.
The current wastewater plant has a rated capacity of seven million gallons per day (mgd) and is currently treating approximately 6.5 mgd. The City has proposed to expand the capacity to nine mgd, and an engineering design project is currently underway. According to Finding 45 of the new NPDES discharge permit (Order No. R5-2003-0085), State Water Resources Control Board policy requires “that increases in wastewater flows achieve the highest quality of water consistent with the maximum benefit to the people of the state. It must be demonstrated that the wastewater treatment facility, with an increased flow rate, provides best practicable treatment, meets waste discharge requirements, and will not unreasonably affect beneficial uses.”

Wastewater discharge is regulated by the California Regional Water Quality Control Board (RWQCB). Under RWQCB regulations, the bypass or overflow of wastewater from treatment plants and collection systems is prohibited.

Wastewater Flow Components

Design flows for wastewater collection systems are based on two major components: base wastewater flow (BWF) and infiltration/inflow (I/I). BWF is the sanitary and process flow from residential, commercial, industrial, and institutional uses. BWF rates differ depending on the type of land use and typically vary throughout the day and between weekdays and weekends. I/I is extraneous groundwater and stormwater that enter the system through sewer defects and direct storm drainage connections.

Groundwater enters the collection system through defects in pipes, pipe joints, and other sewer structures. The amount of infiltration depends on the condition of the system and the elevation of the groundwater table relative to sewer lines. The rate of groundwater infiltration is generally constant over short durations, but tends to increase during the wet weather season.

Stormwater flow is directly related to amount of rainfall. It is also sensitive to soil moisture and tends to be greatest late in the wet weather season when soil is highly saturated. Stormwater can enter the system through cross-connections between the storm drain and sanitary sewer systems or through illegal connections.

I/I often represents the dominant component of wastewater flow in older portions of a collection system, since it is highly dependent on the age of sewers as well as soil and topographic characteristics. In January 1997, when approximately 90 percent of Yuba City residents were evacuated due to the potential flooding of the Feather River, the water plant continued to produce approximately 1.5 mgd while flows entering the City’s WTF totaled approximated 2.5 mgd. As such, the I/I component of wastewater flow in the City at that time was approximately 1.0 mgd, or 40 percent.

Unit Flow Factors

Base wastewater flow factors represent average flow in gallons per day (gpd). The estimated per capita wastewater flow for residential and commercial is 110 gallons per day. There is not a convenient way to separate commercial from residential contribution. Industrial contribution is highly variable. The
largest industry, Sunsweet, averages 1.1 mgd Monday through Friday, and a much lower flow on weekends.13 Industrial flow contributes an average of 20 percent of the total flow into the WTF.14

DEFICIENCIES AND PLANNED IMPROVEMENTS

Yuba City was originally a rural city with sewage treatment provided by individual septic systems. Since 1950, new development connected to the municipal system, and existing commercial and residential properties were provided an opportunity to connect. Connection to the sewage system was never made mandatory for existing customers utilizing septic tanks, though the Sutter County Department of Health Services can require a customer to connect to the municipal system if their individual septic tank or leach system fails. This results in customers within the City Limits who have retained their septic systems and are not connected to the municipal system. It is not known how many individual septic tanks are in use, or when they will fail.15

Although the UWWMP states that the wastewater plant is already running at 93 percent of capacity (6.5 of 7 mgd),16 the WWSMP states that “the results of the [wastewater system] modeling [performed in 1997] do not indicate major sewer deficiencies for both current and future flow conditions.”17 Yuba City is in the midst of renewing its wastewater treatment discharge permit with the RWQCB, who controls the type and quantity of treated wastewater discharges. The expansion plans, which are spelled out in the 1997 WWSMP, include numerous improvements that will allow the city to reliably treat an average dry weather flow (adwf) of 9 mgd. The Master Plan also identifies Phase III projects, intended to provide for 12 mgd of adwf by 2020, as well as additional projects that would further increase capacity to meet future demand.18

PROJECTED NEEDS

The City’s Urban Water Management Plan projects wastewater disposal amounts of 12 mgd in the year 2020, based on population projections of 97,000, average per capita demand of 110 gallons per day, and relatively steady industrial demand (1.2 mgd). The UWMP does not include projections for the year 2025, however, projected demand for the buildout population can be made using the same methodology used to calculate 2020 projections. Assuming a buildout population of 108,000 and slightly increased industrial use (1.3 mgd), about 13.2 mgd of wastewater treatment capacity will be needed in year 2025. Although wastewater treatment improvements to meet this demand have not been funded, projects have been identified in the WSMP. These projects will be developed when the need arises for increased treatment capacity. Several of the new projects being built as part of improvements to the wastewater treatment system are being sized to handle future demand levels.

13 Bill Lewis, Response to Wastewater Service Questions, 20 Aug 2001.
14 WWSMP, 1997, p 2-2.
15 All information this paragraph, UWWMP, 2001, p 22.
16 UWWMP, 2001, p 23.
17 WWSMP, 1997, p ES-4.
18 WWSMP, 1997, pp 6-3.
WASTEWATER RECLAMATION

According to recent studies summarized in the UWMP, water reclamation in Yuba City is feasible, but is not economically desirable. Costs to produce reclaimed water are greater than the cost of fresh water supplies for both agriculture and urban uses. Until these costs are somehow offset or reduced, there is no incentive for potential customers to use reclaimed water. If the cost of fresh water supplies increases substantially over the next 20 years, reclaimed water may become more attractive to potential users.

GUIDING POLICY

7.2-G-1 Ensure that adequate wastewater treatment capacity is available to serve existing and future needs of the City.

IMPLEMENTING POLICIES

7.2-I-1 Maintain existing levels of wastewater service by preserving and improving infrastructure, including replacing sewer mains as necessary.

7.2-I-2 Evaluate the adequacy of sewer infrastructure in areas where land use intensification is anticipated to occur, and develop a strategy to address potential deficiencies in capacity.

7.2-I-3 Coordinate capital improvements planning for all sewer service infrastructure with the direction, extent, and timing of growth.

7.2-I-4 Decline requests for sewer extensions beyond the UGB, except in cases of existing documented health hazards and in areas where the City has prior agreements to provide services.

7.2-I-5 Establish equitable methods for distributing costs associated with providing wastewater services to development, including impact mitigation fees where warranted.

7.3 SOLID WASTE MANAGEMENT AND RECYCLING

SOLID WASTE DISPOSAL VOLUMES AND TRENDS

Franchised solid waste collection and disposal for Yuba City is provided by Yuba-Sutter Disposal, Inc. (YSDI). YSDI also provides recycling services to the City. Yuba City has a 10-year contract to send its waste to the Ostrom Road Landfill in Wheatland, ten miles to the southeast in Yuba County. No solid waste management facilities or transfer stations are located within Sutter County. Although the City’s contract with YSDI expires in 2011, there is no limitation to the number of renewals to this contract.

19 Alyson F. Burleigh, Aurora Associates (consultant to Regional Waste Management Authority), memorandum to the City, August 13, 2001.

20 Sutter County General Plan 2015, 1996.

21 Terrel Locke, Yuba City Administrative Services, personal communication, November 28, 2001.
Yuba City’s solid waste disposal rose about 22 percent in the past six years, from 45,590 tons in 1996 to 55,085 tons in 2001 (see Table 6-4). Waste diversion rates, the percentages of generated waste not disposed in landfills, are only calculated for the Regional Waste Management Authority (RWMA) as a whole, which comprises Yuba and Sutter Counties. The diversion rate in this region rose from 20 percent in 1996 to 27 percent in 2001. There is no documented significance attached to the large change in disposal tonnage in 1997, however the amount may be due to the flood that caused widespread damage in January of that year. Flooding resulted in many water-damaged household items that were disposed as solid waste.

Table 7-4: Yuba City Solid Waste Disposal and Regional Diversion Rates (1996-2000)

<table>
<thead>
<tr>
<th>Year</th>
<th>Disposal (tons)</th>
<th>Diversion Rates (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>45,590</td>
<td>20</td>
</tr>
<tr>
<td>1997</td>
<td>68,010</td>
<td>22</td>
</tr>
<tr>
<td>1998</td>
<td>46,985</td>
<td>23</td>
</tr>
<tr>
<td>1999</td>
<td>46,348</td>
<td>29</td>
</tr>
<tr>
<td>2000</td>
<td>49,345</td>
<td>34</td>
</tr>
<tr>
<td>2001</td>
<td>55,085</td>
<td>27</td>
</tr>
</tbody>
</table>

REUSE AND RECYCLING

To guide the waste diversion process, the California Integrated Waste Management Act of 1989 promotes an integrated solid waste management approach which establishes the following hierarchy of goals: (1) source reduction; (2) recycling and composting; (3) environmentally safe transformation and disposal of wastes. The statewide mandated goal for waste diversion was 50 percent by the year 2000; due to the shortfall of the RWMA (27 percent diverted in 2001), the Authority has requested a three-year extension. 22

On October 1, 2001, RWMA implemented one of the most liberal curbside recycling programs in the state, in order to help reach the 50 percent goal by the end of 2003. Separate bins for greenwaste, recyclable materials, and nonrecyclable waste were distributed to households through the region. All paper (including magazines and cereal boxes), glass, plastic (#1 through #7), and aluminum products and tin cans are accepted by the recycling system in a single stream (combined bin). While recycling is not mandatory, households are charged for waste disposal based on the volume of nonrecyclable household waste produced. There is no limit to the volume of greenwaste and recyclable materials picked up. 23 Several redemption recycling centers are distributed within the City.

23 Ibid.
FUTURE DEMAND

Assuming a 50 percent diversion rate for buildout year 2025, the estimated solid waste disposal demand would be about 78,473 tons per year.\(^24\) The Ostrom Road Landfill has an expected life span to the year 2030.

GUIDING POLICIES

7.3-G-1 Meet the City’s solid waste disposal needs, while maximizing opportunities for waste reduction and recycling.

7.3-G-2 Manage solid waste so that State diversion goals are exceeded and the best possible service is provided to the citizens and businesses of Yuba City.

7.3-G-3 Continue public education programs about waste reduction, including recycling, yard waste, wood waste, and household hazardous waste.

IMPLEMENTING POLICIES

7.3-I-1 Continue contracting for garbage and recycling collection services.

7.3-I-2 Expand recycling efforts in multi family residential and commercial projects, and continue to encourage recycling by all residents.

7.3-I-3 Require builders to incorporate interior and exterior storage areas for recyclables and convenient access to recycle areas into new commercial and residential remodeled buildings, and encourage remodeled buildings (both residential and commercial) to make recycling activities more convenient for those who use the buildings.

7.3-I-4 Provide and promote opportunities to reduce waste at home and in businesses, through public education information.

7.3-I-5 Encourage existing commercial businesses and residential development to install recycling receptacles on their premises.

7.3-I-6 Comply with State requirements for proper handling and storage of solid waste and recyclables and diversion of solid waste from landfills.

7.3-I-7 Obtain input from the public to ensure that solid waste programs effectively address community needs and issues.

\(^24\) This number is derived by calculating the per capita disposal amount for year 2000, multiplying it by the buildout population, and adjusting the total to reflect increased diversion rate to 50 percent.